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Convergence of continuous-time quantum walks on the line
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The position density of a “particle” performing a continuous-time quantum walk on the integer lattice,
viewed on length scales inversely proportional to the time ¢, converges (as 7 tends to infinity) to a probability
distribution that depends on the initial state of the particle. This convergence behavior has recently been
demonstrated for the simplest continuous-time random walk [N. Konno, Phys. Rev. E 72, 026113 (2005)]. In
this Brief Report, we use a different technique to establish the same convergence for a very large class of
continuous-time quantum walks, and we identify the limit distribution in the general case.
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An article recently published in this journal [1] proves
that a certain “continuous-time quantum walk™ on the integer
lattice 7 has the same kind of convergence behavior as
“coined quantum walks” on 7 have [2,3]. In this paper, the
convergence result of Ref. [1] is generalized to a large class
of continuous-time quantum walks, using the techniques de-
veloped in Refs. [4,5] for coined quantum walks. An inter-
esting aspect of the generalized continuous-time quantum
walk is that the limiting measure need not have compact
support.

Continuous time quantum walks on graphs were first de-
fined in Ref. [6] as follows. Consider a graph with vertex set
V. Let L, denote the infinitesimal generator of the
continuous-time Markov jump process on V, where jumps
only occur between adjacent vertices and the jumping rates
are all equal to some y>0. The continuous-time quantum
walk of Ref. [6] amounts to the unitary dynamics

= ey (1)

on ¢*(V), the Hilbert space of square-summable complex-
valued functions on V. Other authors [7,8] have defined
continuous-time quantum walk as the dynamics

o — e iy, (2)

using the operator defined by the adjacency matrix A of the
graph instead of L,. When the graph is the integer lattice Z,
it hardly matters which way the continuous-time quantum
walk is defined, for L,=(1-2y)/+yA and therefore formulas
(1) and (2) differ only by a change of time and phase.

In Ref. [1], Konno studies the continuous-time quantum
walk on 7 defined as in formula (2) but with —#/2 instead of
t. That is, he studies the dynamics iy e’ "4y, where A
denotes the operator on ¢ 2(7) whose matrix with respect to
the standard orthonormal basis {e,} is the adjacency matrix
for the integer lattice [the standard basis vector e, is the
member of ¢%(Z) with e,(n)=1 and e,(k)=0 for all k #n]. In
this case the operators e/”4 can be expressed exactly in
terms of Bessel functions, and the following convergence
behavior becomes evident [1]. For each z, define the prob-
ability measures
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on 7. Then

b
dx
flim”atgksbt Pt(k) Ja vl -x?

for -1=a<b=l.

This result is a special case of a much more general
proposition. The main condition is that the generator A of the
quantum walk (2) be a self-adjoint operator that commutes
with translations of ¢%(Z). Any such A has a matrix represen-
tation (with respect to the standard basis) of the form

ap a; a; as

ay ap ap ap aj

a, ay ay a; a, . (3)

as dp dap 4o dap

as da; d; dy

with ay=a,. We will only consider self-adjoint operators A
that are Fourier transforms of a multiplication operator, in
the following sense. We denote the circle of unit radius by T
and parametrize it by 0<<<2w. L*(T,d60/2m) denotes the
Hilbert space of square-integrable functions on T. The Fou-
rier transform

- do
(ff)('l)=f f(ﬂ)e_mgz_
T T
is a unitary isomorphism from L*(T,d6#/2m) to €*(Z) with
inverse

(F9)(0) = 2 n)e™’.

ne’

We will assume that there exists a measurable real-valued
function a(#) on T such that A satisfies (F AFf)(6)
=ad(6)f(0) whenever f and af are both in L*(T,d6/2m). We
will further assume that d(6) is differentiable at almost every
6 eT. These assumptions on the form of A permit us to
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vastly generalize the main result of Ref. [1] fairly easily, but
they are rather technical. Perhaps a more convenient (but less
general) condition is that the entries of the matrix (3) satisfy
37 nla,| <o, for this implies that A has the desired form
with d(0)=ay+2_,(a,e"’+a,e ™% continuously differen-
tiable. The main result of Ref. [1] is a special case of the
following theorem: the case where d(6)=—cos(6#) and
=€y.

Theorem 1. Suppose that the matrix (3) represents an op-
erator A on ¢*(Z) of the form FM[4]F", where M[a] de-
notes the operator on L*(T,d6/2) of multiplication by a
measurable real-valued function d(6). Suppose that a’'(6)
=(d/d6)a(0) is defined almost everywhere with respect to
Lebesgue measure d6. Let ¢, be any unit vector in £>(7Z) and
define

P(n) = e,e ), (4)

where e, is the nth standard basis vector in €2(Z). Let P[]
be the probability measure

Plyol(dx) = 2 P(n)8(x — nit) (5)

ne’

on R, where 8(x—n/t) denotes the Dirac delta distribution at
n/t. Then the probability measures P[] converge weakly
as t—o to the probability measure P[] defined on mea-
surable subsets XC R by

Pyl = - J (F ) @Pde.  (6)

{6:-a"(0) e X}

Proof. We will show that the “characteristic functions” of
the probability measures (5) converge to the characteristic
function of the probability measure (6), for this implies the
weak convergence of the probability measures themselves
(Ref. [9], Sec. XIII-1). The characteristic functions ®,(w) of
the probability measures P[] in Eq. (4) are

d(w) = f &P [p](dx) = >, P(n)ei

nel

— E eiwn/t|<eme—im ¢0>|2 — <e—itA lﬁOaEw/ze_itA ¢0>

nel
= (g, €™ E e ), (7)
where E, denotes the  multiplication  operator

(E ) (n)=e™y(n) on €*(Z). To show that these characteris-
tic functions converge, we will take Fourier transforms.

Let M[-a’'] denote the multiplication operator
(M[=d"1)(6)=—a'(0)f(6) and let
H=FM[-ad'|F". (8)

Note that H may be an unbounded self-adjoint operator on
€%(7). We claim that
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hmeitAEw/te—itA l//: einl,b (9)

11—

for all e €%(Z). To prove this claim, first verify that
(Fe™F)(0) = (7470 =" Of(0)  (10)
and
(FEF1)(0) = f(0+ wlt) (1n
for all fe L*(T,d6/2m). Supposing that (F )(6) is a con-

tinuous function on T, we calculate that

im(F e E e~ ) (6) = lim[ (F ™ ) (F E oy )

t—o0

X(F'e™™F)F y)(6)
— lime”d(e)e_itﬁ(aJ’“’/t)(ﬁ(/f)(0 + w/[)

t—

= e O(F ) (6) (12)

at almost every 6 by Egs. (10) and (11). Since F i is
bounded, the functions that converge pointwise in Eq. (12)
also converge in L*(T,d6/2m) by Lebesgue’s bounded con-
vergence theorem. The continuity of F from L*(T,d6/2) to
€%(Z) implies that

limeitAEw/[e—itsz ]_‘ein[—d’]]_‘*dfz ei“’H(//
t—®
as claimed in Eq. (9). This verifies the claim when F ¢ is a
continuous function; the general claim follows by a straight-
forward density argument.
Applying the claim (9) in Eq. (7) yields

lim®,(w) = <¢o’@in¢0>-

—0oo

Using the unitary isomorphism F and the definition (8) of H
one finds

D(w) = rlir{l.cq),(w) = <l/fo,€in¢o>e2

= <f;k l//(),(]: *ei“’H]-‘)f* ‘r/fo>L2 = <7'- *'ﬁo’eiwf*Hfﬁ 1/’0>L2
= (F o, M Y

- j o' 0| (2 o) (P22
T 277

This is the characteristic function of the probability measure
P[] defined in Eq. (6). |
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