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The position density of a “particle” performing a continuous-time quantum walk on the integer lattice,
viewed on length scales inversely proportional to the time t, converges �as t tends to infinity� to a probability
distribution that depends on the initial state of the particle. This convergence behavior has recently been
demonstrated for the simplest continuous-time random walk �N. Konno, Phys. Rev. E 72, 026113 �2005��. In
this Brief Report, we use a different technique to establish the same convergence for a very large class of
continuous-time quantum walks, and we identify the limit distribution in the general case.
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An article recently published in this journal �1� proves
that a certain “continuous-time quantum walk” on the integer
lattice Z has the same kind of convergence behavior as
“coined quantum walks” on Z have �2,3�. In this paper, the
convergence result of Ref. �1� is generalized to a large class
of continuous-time quantum walks, using the techniques de-
veloped in Refs. �4,5� for coined quantum walks. An inter-
esting aspect of the generalized continuous-time quantum
walk is that the limiting measure need not have compact
support.

Continuous time quantum walks on graphs were first de-
fined in Ref. �6� as follows. Consider a graph with vertex set
V. Let L� denote the infinitesimal generator of the
continuous-time Markov jump process on V, where jumps
only occur between adjacent vertices and the jumping rates
are all equal to some ��0. The continuous-time quantum
walk of Ref. �6� amounts to the unitary dynamics

�0 � e−itL��0 �1�

on �2�V�, the Hilbert space of square-summable complex-
valued functions on V. Other authors �7,8� have defined
continuous-time quantum walk as the dynamics

�0 � e−itA�0, �2�

using the operator defined by the adjacency matrix A of the
graph instead of L�. When the graph is the integer lattice Z,
it hardly matters which way the continuous-time quantum
walk is defined, for L�= �1−2��I+�A and therefore formulas
�1� and �2� differ only by a change of time and phase.

In Ref. �1�, Konno studies the continuous-time quantum
walk on Z defined as in formula �2� but with −t /2 instead of
t. That is, he studies the dynamics �0�ei�t/2�A�0, where A
denotes the operator on �2�Z� whose matrix with respect to
the standard orthonormal basis �en� is the adjacency matrix
for the integer lattice �the standard basis vector en is the
member of �2�Z� with en�n�=1 and en�k�=0 for all k�n�. In
this case the operators ei�t/2�A can be expressed exactly in
terms of Bessel functions, and the following convergence
behavior becomes evident �1�. For each t, define the prob-
ability measures

Pt�n� = ��en,ei�t/2�Ae0	�2

on Z. Then

lim
t→�



at�k�bt

Pt�k� = �
a

b dx

��1 − x2

for −1�a�b�1.
This result is a special case of a much more general

proposition. The main condition is that the generator A of the
quantum walk �2� be a self-adjoint operator that commutes
with translations of �2�Z�. Any such A has a matrix represen-
tation �with respect to the standard basis� of the form


� � � � � �

� a0 a1 a2 a3 � �

� a1 a0 a1 a2 a3 �

� a2 a1 a0 a1 a2 �

� a3 a2 a1 a0 a1 �

� � a3 a2 a1 a0 �

� � � � � �

� �3�

with a0=a0. We will only consider self-adjoint operators A
that are Fourier transforms of a multiplication operator, in
the following sense. We denote the circle of unit radius by T
and parametrize it by 0���2�. L2�T ,d� /2�� denotes the
Hilbert space of square-integrable functions on T. The Fou-
rier transform

�Ff��n� = �
T

f���e−in� d�

2�

is a unitary isomorphism from L2�T ,d� /2�� to �2�Z� with
inverse

�F*����� = 

n�Z

��n�ein�.

We will assume that there exists a measurable real-valued
function â��� on T such that A satisfies �F*AFf����
= â���f��� whenever f and â f are both in L2�T ,d� /2��. We
will further assume that â��� is differentiable at almost every
��T. These assumptions on the form of A permit us to
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vastly generalize the main result of Ref. �1� fairly easily, but
they are rather technical. Perhaps a more convenient �but less
general� condition is that the entries of the matrix �3� satisfy

n=1

� n�an���, for this implies that A has the desired form
with â���=a0+
n=1

� �anein�+ane−in�� continuously differen-
tiable. The main result of Ref. �1� is a special case of the
following theorem: the case where â���=−cos��� and �0

=e0.
Theorem 1. Suppose that the matrix �3� represents an op-

erator A on �2�Z� of the form FM�â�F*, where M�â� de-
notes the operator on L2�T ,d� /2�� of multiplication by a
measurable real-valued function â���. Suppose that â����
= �d /d��â��� is defined almost everywhere with respect to
Lebesgue measure d�. Let �0 be any unit vector in �2�Z� and
define

Pt�n� = ��en,e−itA�0	�2, �4�

where en is the nth standard basis vector in �2�Z�. Let Pt��0�
be the probability measure

Pt��0��dx� = 

n�Z

Pt�n�	�x − n/t� �5�

on R, where 	�x−n / t� denotes the Dirac delta distribution at
n / t. Then the probability measures Pt��0� converge weakly
as t→� to the probability measure P��0� defined on mea-
surable subsets X�R by

P��0��X� =
1

2�
�

��:−â�����X�
��F*�0�����2d� . �6�

Proof. We will show that the “characteristic functions” of
the probability measures �5� converge to the characteristic
function of the probability measure �6�, for this implies the
weak convergence of the probability measures themselves
�Ref. �9�, Sec. XIII-1�. The characteristic functions 
t��� of
the probability measures Pt��0� in Eq. �4� are


t��� � � ei�xPt��0��dx� = 

n�Z

Pt�n�ei�n/t

= 

n�Z

ei�n/t��en,e−itA�0	�2 = �e−itA�0,E�/te
−itA�0	

= ��0,eitAE�/te
−itA�0	 , �7�

where Ex denotes the multiplication operator
�Ex���n�=einx��n� on �2�Z�. To show that these characteris-
tic functions converge, we will take Fourier transforms.

Let M�−â�� denote the multiplication operator
�M�−â��f����=−â����f��� and let

H = FM�− â��F*. �8�

Note that H may be an unbounded self-adjoint operator on
�2�Z�. We claim that

lim
t→�

eitAE�/te
−itA� = ei�H� �9�

for all ���2�Z�. To prove this claim, first verify that

�F*eitAFf���� = �eitF*AFf���� = eitâ���f��� �10�

and

�F*E�/tFf���� = f�� + �/t� �11�

for all f �L2�T ,d� /2��. Supposing that �F*����� is a con-
tinuous function on T, we calculate that

lim
t→�

�F*eitAE�/te
−itA����� = lim

t→�
��F*eitAF��F*E�/tF�

��F*e−itAF�F*�����

= lim
t→�

eitâ���e−itâ��+�/t��F*���� + �/t�

= e−i�â�����F*����� �12�

at almost every � by Eqs. �10� and �11�. Since F*� is
bounded, the functions that converge pointwise in Eq. �12�
also converge in L2�T ,d� /2�� by Lebesgue’s bounded con-
vergence theorem. The continuity of F from L2�T ,d� /2�� to
�2�Z� implies that

lim
t→�

eitAE�/te
−itA� = Fei�M�−â��F*� = ei�H�

as claimed in Eq. �9�. This verifies the claim when F*� is a
continuous function; the general claim follows by a straight-
forward density argument.

Applying the claim �9� in Eq. �7� yields

lim
t→�


t��� = ��0,ei�H�0	 .

Using the unitary isomorphism F and the definition �8� of H
one finds


��� � lim
t→�


t��� = ��0,ei�H�0	�2

= �F*�0,�F*ei�HF�F*�0	L2 = �F*�0,ei�F*HFF*�0	L2

= �F*�0,ei�M�−â��F*�0	L2

= �
T

e−i�â������F*�0�����2
d�

2�
.

This is the characteristic function of the probability measure
P��0� defined in Eq. �6�. �
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